-
Glass Lester posted an update 1 week, 2 days ago
Most of these nitrates migrate into the interior of the mordenite and exchange at framework binding sites, returning silver to its unreduced state (AgZ). The remaining nitrates exist at a persistent concentration without aggregating into bulk-phase AgNO3. X-ray absorption spectroscopy results further indicate that iodine adsorption occurs on not just Ag0Z but also on AgZ and a portion of the nitrates in the system. Cy7 DiC18 cost AgZ adsorbs a sizable quantity of iodine early in the aging process, but its capacity drops rapidly over time. For well-aged samples, nitrates are responsible for up to 95% of mordenite’s iodine capacity. These results have enhanced our understanding of the aging process in silver mordenite and are expected to guide the development of superior adsorbents for the capture of radioactive iodine from reprocessing off-gas.Metasurfaces made up of subwavelength arrays of Mie scatterers can be engineered to control the optical properties of incident light. The hybridization of the fundamental Mie resonances with lattice resonances greatly enhances the scattering cross-section of individual Mie scatterers. Through careful design of the locations of these hybridized modes using two differently engineered hydrogenated amorphous silicon nanorods, we numerically calculate and experimentally fabricate two examples of full color printing; one with spectral colors comparable to the Adobe RGB gamut, and another with gradients of color. We identify and characterize the mechanisms behind each and provide a framework that can be used to design any all-dielectric metasurfaces of subwavelength Mie scatterers for spectral modulation.Physicochemical properties of biomaterials play a regulatory role in osteoblast proliferation and differentiation. Inspired by the electrical properties of natural bone, the electroactive composites applied to osteogenesis have gradually become the hotspot of research. In this work, an electroactive biocomposite of poly(lactic-co-glycolic acid) mixed with gadolinium-doped barium titanate nanoparticles (Gd-BTO NPs) was investigated to establish the structure-activity relationship between electrical property, especially surface potential, and osteogenic activity. Furthermore, the potential mechanism was also explored. The results showed that the introduction of Gd-BTO NPs was more conducive to improve the elastic modulus and beneficial to utilize MRI and X-ray dual imaging. The electrical characteristics of composites indicate that the introduction of Gd-BTO NPs can effectively improve the electrical properties of materials including dielectricity, piezoelectricity, and surface potential. Moreover, adjusting the amount of gadolinium doping could optimize electrical activity and enhance MRI compatibility. The surface potential of 0.2Gd-BTO/PLGA could reach -58.2 to -60.9 mV at pH values from 7 to 9. Functional studies on cells revealed that the negative surface potential of poled Gd-BTO/PLGA enhanced cell attachment and osteogenic differentiation significantly. Furthermore, the negative surface potential could induce intracellular Ca2+ ion concentration oscillation and improve osteogenic differentiation via the calcineurin/NFAT signal pathway. These findings suggest that electroactive Gd-BTO/PLGA nanocomposites may have huge potential for bone regeneration and be expected to have wide applications in the field of bone tissue engineering.Current wearable sensors are fabricated with substrates, which limits the comfort, flexibility, stretchability, and induces interface mismatch. In addition, the substrate prevents the evaporation of sweat and is harmful to skin health. In this work, we have enabled the substrate-free laser scribed graphene (SFG) electronic skin (e-skin) with multifunctions. Compared with the e-skin with the substrate, the SFG has good gas permeability, low impedance, and flexibility. Only assisted using water, the SFG can be transferred to almost any objects including silicon and human skin and it can even be suspended. Many through-holes like stomas in leaf can be formed in the SFG, which make it breathable. After designing the pattern, the gauge factor (GF) of graphene electronic skin (GES) can be designed as the strain sensor. Physiological signals such as respiration, human motion, and electrocardiogram (ECG) can be detected. Moreover, the suspended SFG detect vibrations with high sensitivity. Due to the substrate-free structure, the impedance between SFG e-skin and the human body decreases greatly. Finally, an ECG detecting system has been designed based on the GES, which can monitor the body condition in real time. To analyze the ECG signals automatically, a convolutional neural network (CNN) was built and trained successfully. This work has high potential in the field of health telemonitoring.Chiral hollow nanovolcano array (HNVA) film and chiral hollow nanoshells (HNSs) are simultaneously fabricated via a new strategy of colloidal lithography technique. The chirality of both chiral plasmonic nanostructures, which arises from the asymmetric charge oscillation and electric field distributions, can be well controlled by regulating the opening-angle of the nanounits during the metal depositions. The large-area HNVA films exhibit strong chiroptical responses in the ultraviolet-visible region with g-factor of 0.15 and possess remarkable transferability for better adaptability of different application situations. The chiral HNSs, which are simultaneously obtained during the deposition, is equipped with adjustable chirality and integrability. The obtained HNVA films were transferred to specific substrates, e.g., polydimethylsiloxane (PDMS), hydrogels, and high-curvature surfaces, maintaining the original chiroptical properties and excellent mechanical strength. Deformable chiral flexible metamaterial is obtained by incorporating the chiral HNSs in the hydrogel, enabling the ultrasensitive detection of water content in the hydrogel. Overall, this work will contribute to the study of chiral metamaterials by providing two kinds of newly developed chiral plasmonic metamaterials with tunable chirality and inspiring progressing ways for the flexible devices of artificial chirality.