-
Blalock Diaz posted an update 11 hours, 46 minutes ago
Automated diagnosis of Attention Deficit/Hyperactivity Disorder (ADHD) from brain’s functional imaging has gained more interest due to its high prevalence rates among children. While phenotypic information, such as age and gender, is known to be important in diagnosing ADHD and critically affects the representation derived from fMRI brain images, limited studies have integrated phenotypic information when learning discriminative embedding from brain imaging for such an automatic classification task. In see more , we propose to integrate age and gender attributes through attention mechanism that is jointly optimized when learning a brain connectivity embedding using convolutional variational autoencoder derived from resting state functional magnetic resonance imaging (rs-fMRI) data. Our proposed framework achieves a state-of-the-art average of 86.22% accuracy in ADHD vs. typical develop control (TDC) binary classification task evaluated across five public ADHD-200 competition datasets. Furthermore, our analysis points out that there are insufficient linked connections to the brain region of precuneus in the ADHD group.Hypotension is common in critically ill patients. Early prediction of hypotensive events in the Intensive Care Units (ICUs) allows clinicians to pre-emptively treat the patient and avoid possible organ damage. In this study, we investigate the performance of various supervised machine-learning classification algorithms along with a real-time labeling technique to predict acute hypotensive events in the ICU. It is shown that logistic regression and SVM yield a better combination of specificity, sensitivity and positive predictive value (PPV). Logistic regression is able to predict 85% of events within 30 minutes of their onset with 81% PPV and 96% specificity, while SVM results in 96% specificity, 83% sensitivity and 82% PPV. To further reduce the false alarm rate, we propose a high-level decision-making algorithm that filters isolated false positives identified by the machine-learning algorithms. By implementing this technique, 24% of the false alarms are filtered. This saves 21 hours of medical staff time through 2,560 hours of monitoring and significantly reduces the disturbance caused by alarming monitors.In vitro cytotoxicity screening is a crucial step of anticancer drug discovery. The application of deep learning methodology is gaining increasing attentions in processing drug screening data and studying anticancer mechanisms of chemical compounds. In this work, we explored the utilization of convolutional neural network in modeling the anticancer efficacy of small molecules. In particular, we presented a VGG19 model trained on 2D structural formulae to predict the growth-inhibitory effects of compounds against leukemia cell line CCRF-CEM, without any use of chemical descriptors. The model achieved a normalized RMSE of 15.76% on predicting growth inhibition and a Pearson Correlation Coefficient of 0.72 between predicted and experimental data, demonstrating a strong predictive power in this task. Furthermore, we implemented the Layer-wise Relevance Propagation technique to interpret the network and visualize the chemical groups predicted by the model that contribute to toxicity with human-readable representations.Clinical relevance-This work predicts the cytotoxicity of chemical compounds against human leukemic lymphoblast CCRF-CEM cell lines on a continuous scale, which only requires 2D images of the structural formulae of the compounds as inputs. Knowledge in the structure-toxicity relationship of small molecules will potentially increase the hit rate of primary drug screening assays.Fungemia is a life-threatening infection, but predictive models of in-patient mortality in this infection are few. In this study, we developed models predicting all-cause in-hospital mortality among 265 fungemic patients in the Medical Information Mart for Intensive Care (MIMIC-III) database using both structured and unstructured data. Structured data models included multivariable logistic regression, extreme gradient boosting, and stacked ensemble models. Unstructured data models were developed using Amazon Comprehend Medical and BioWordVec embeddings in logistic regression, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). We evaluated models trained on all notes, notes from only the first three days of hospitalization, and models trained on only physician notes. The best-performing structured data model was a multivariable logistic regression model that achieved an accuracy of 0.74 and AUC of 0.76. #link# Liver disease, acute renal failure, and intubation were some of the top features driving prediction in multiple models. CNNs using unstructured data achieved similar performance even when trained with notes from only the first three days of hospitalization. The best-performing unstructured data models used the Amazon Comprehend Medical document classifier and CNNs, achieving accuracy ranging from 0.99-1.00, and AUCs of 1.00. Therefore, unstructured data – particularly notes composed by physicians – offer added predictive value over models based on structured data alone.Neonatal endotracheal intubation (ETI) is an important, complex resuscitation skill, which requires a significant amount of practice to master. Current ETI practice is conducted on the physical manikin and relies on the expert instructors’ assessment. Since the training opportunities are limited by the availability of expert instructors, an automatic assessment model is highly desirable. However, automating ETI assessment is challenging due to the complexity of identifying crucial features, providing accurate evaluations and offering valuable feedback to trainees. In this paper, we propose a dilated Convolutional Neural Network (CNN) based ETI assessment model, which can automatically provide an overall score and performance feedback to pediatric trainees. The proposed assessment model takes the captured kinematic multivariate time-series (MTS) data from the manikin-based augmented ETI system that we developed, automatically extracts the crucial features of captured data, and eventually provides an overall score as output.