-
Pettersson Osborne posted an update 1 week, 3 days ago
escribed synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. learn more Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.A notable challenge faced by pediatric hospitals during the COVID-19 pandemic included the need to decrease inpatient census and socially distant non-clinical hospital employees to alternative work arrangements. In doing so, nurses and other clinical care services employees were reassigned to new roles, while others continue to work from home. This paper aims to describe how during the COVID-19 pandemic, a pediatric hospital-based center for nursing research and evidence-based practice used this opportunity to virtually engage staff across the department in topics of clinical inquiry through education sessions, office hours, and individualized/team consultation. Therefore, elevating and increasing the presence of nursing research and evidence-based practice while providing opportunities for the continued professional development of nurses, respiratory therapists, clinical dietitians, child life specialists and employees in neurodiagnostics.
Small Cell Lung Cancer (SCLC) is one of the most aggressive thoracic malignancies and has been very challenging in developing personalized medicine. While immunohistochemistry (IHC) markers have established role in pathology diagnosis of SCLC, it is particularly important to apply early and simple methods to effectively determine the prognosis. This study aimed to review and identify prognostic protein markers that have potential to be incorporated into clinical care for SCLC.
we systematically reviewed PubMed, Embase, Web of Science and Cochrane Library until October 19th, 2019 that reported prognostic IHC markers in SCLC. In this review, we focused on markers evaluated in at least two independent studies to compile the most forthcoming prognostic markers.
According to their function in the tumor, including proliferation-related markers, growth suppression-related markers, invasion- and metastasis-related markers, apoptosis-related markers, angiogenesis-related markers, immune regulation-related markers. Extensive reports into informative tables based on sufficiencies of evidence were summarized as some easy-to-use literature reservoirs for further referring.
Strong evidence supports that the 24 emerging markers or their combinations may be useful in predicting prognosis, helping personalized therapy decision-making for SCLC patients.
Strong evidence supports that the 24 emerging markers or their combinations may be useful in predicting prognosis, helping personalized therapy decision-making for SCLC patients.Asymmetric-flow field-flow fractionation (AF4) has been recognized as an invaluable tool for the characterisation of particle size, polydispersity, drug loading and stability of nanopharmaceuticals. However, the application of robust and high quality standard operating procedures (SOPs) is critical for accurate measurements, especially as these complex drug nanoformulations are most often inherently polydisperse. In this review we describe a unique international collaboration that lead to the development of a robust SOP for the measurement of physical-chemical properties of nanopharmaceuticals by multi-detector AF4 (MD-AF4) involving two state of the art infrastructures in the field of nanomedicine, the European Union Nanomedicine Characterization Laboratory (EUNCL) and the National Cancer Institute-Nanotechnology Characterisation Laboratory (NCI-NCL). We present examples of how MD-AF4 has been used for the analysis of key quality attributes, such as particle size, shape, drug loading and stability of complex nanomedicine formulations. The results highlight that MD-AF4 is a very versatile analytical technique to obtain critical information on a material particle size distribution, polydispersity and qualitative information on drug loading. The ability to conduct analysis in complex physiological matrices is an additional very important advantage of MD-AF4 over many other analytical techniques used in the field for stability studies. Overall, the joint NCI-NCL/EUNCL experience demonstrates the ability to implement a powerful and highly complex analytical technique such as MD-AF4 to the demanding quality standards set by the regulatory authorities for the pre-clinical safety characterization of nanomedicines.Plant extraction has existed for a long time and is still of interest. Due to technological improvements, it is now possible to obtain extracts with higher yields. While global yield is a major parameter because it assesses the extraction performance, it can be of interest to focus on the extraction of particular compounds (specific metabolites) to enrich the sample and to avoid the extraction of unwanted ones, for instance the primary metabolites (carbohydrates, triacylglycerols). The objective then is to improve extraction selectivity is then considered. In solid-liquid extraction, which is often called maceration, the solvent has a major impact on selectivity. Its polarity has a direct influence on the solutes extracted, related to the chemical structure of the compounds, and modelling compound/solvent interactions by using various polarity or interaction scales is a great challenge to favor the choice of the appropriate extracting liquid. Technical advances have allowed the development of recent, and sometimes green, extraction techniques, such as Microwave-Assisted Extraction (MAE), Ultrasound-Assisted Extraction (UAE), Pressurized Liquid Extraction (PLE) and Supercritical Fluid Extraction (SFE).