Activity

  • Lindahl Smart posted an update 13 hours, 15 minutes ago

    The synthesis of seven new ß-amino alcohols was designed and performed by starting from eugenol, a natural phenolic compound known to be biologically active. The synthesized compounds were obtained in yields ranging from 54 to 81%. Molecule structures were determined with FT-IR, 1H NMR and 13C NMR spectroscopies. In addition, the inhibitory effects of these substances on acetylcholinesterase (AChE), α-glycosidase (α-Gly), human carbonic anhydrase I (hCA I), and human carbonic anhydrase II (hCA II) enzymes have been investigated. It has been seen that all compounds have a better ability to inhibit compared to existing tried inhibitors. Among these, the best inhibitor against AChE enzyme is 2b (Ki 62.08 ± 11.67 µM and IC50 90.33), and against α-Gly, 2c showed the highest effect (Ki 0.33 ± 0.08 µM and IC50 0.28). The best inhibitor against hCA I, and hCA II enzymes is compound 2f. For hCA I and hCA II, Ki value was measured as 9.68 ± 1.32 and 11.46 ± 2.64 µM and IC50 values as 7.37 and 8.26 µM respectively. The interactions of the studied new propanolamine derivatives with the enzymes were done by molecular docking calculations and their biological activities were compared to the experimental tests. Studied enzymes in molecular docking calculations are acetylcholinesterase (AChE) is PDB ID 4M0E, α-glycosidase (α-Gly) is PDB ID 1R47, human carbonic anhydrase isoenzyme I (hCA I) PDB ID 3LXE is human carbonic anhydrase isoenzyme II (hCA II) is PDB ID 5 AML.Curcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide 8 showed a moderate antiproliferative potency (HCT-116 cell line inhibition of 32.0 µM), no inhibition of normal cell lines C-166, and proven cellular activities leading to apoptosis. SAR studies led to more than 10-fold increase in activity. Our most promising compound, [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] 45 killed colon cancer cells at IC50 = 0.89 µM (Caco-2), 2.85 µM (HCT-116) and 1.65 µM (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 µM and 77.6 µM, respectively). selleck chemical Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part as a result of oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of covalently acting Michael addition compounds that potently kill cancer cells by a defined mechanism, with prominent selectivity profile over non-cancerous cell lines.A simple but previously undescribed macrolide with unprecedented bicyclo 5/9 ring system, namely, cladocladosin A (1), along with two new sulfur-containing macrolides, namely, thiocladospolides F and G (2 and 3), were characterized from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299. The structures of these compounds were established on the basis of spectroscopic interpretation, and the absolute configurations of compounds 1-3 were determined by X-ray crystallographic analysis, Mosher’s method, and by a biogenetic point of view. The possible biogenetic pathway for compounds 1-3 as well as their congeners thiocladospolides A-D and pandangolide 3 was proposed, providing a role in distinguishing the position of sulfur substitution in thiomacrolides. Compounds 1-3 were evaluated for antimicrobial activities against human-, aquatic-, and plant-pathogenic microbes.The brain nicotinic acetylcholine receptors (nAChRs) expressed in pre-synaptic nerve terminals regulate neurotransmitter release. However, there is no evidence for the expression of nAChRs in synaptic vesicles, which deliver neurotransmitter to synaptic cleft. The aim of this paper was to investigate the presence of nAChRs in synaptic vesicles purified from the rat brain and to study their possible involvement in vesicles life cycle. According to dynamic light scattering analysis, the antibody against extracellular domain (1-208) of α7 nAChR subunit inhibited synaptic vesicles clustering. Sandwich ELISA with nAChR subunit-specific antibodies demonstrated the presence of α4β2, α7 and α7β2nAChR subtypes in synaptic vesicles and showed that α7 and β2 nAChR subunits are co-localized with synaptic vesicle glycoprotein 2A (SV2A). Pre-incubation with either α7-selective agonist PNU282987 or nicotine did not affect synaptic vesicles clustering but delayed their Ca2+-dependent fusion with the plasma membranes. In contrast, nicotine but not PNU282987 stimulated acidification of isolated synaptic vesicles, indicating that α4β2 but not α7-containing nAChRs are involved in regulation of proton influx and neurotransmitter refilling. Treatment of rats with levetiracetam, a specific modulator of SV2A, increased the content of α7 nAChRs in synaptic vesicles accompanied by increased clustering but decreased Ca2+-dependent fusion. These data for the first time demonstrate the presence of nAChRs in synaptic vesicles and suggest an active involvement of cholinergic regulation in neurotransmitter release. Synaptic vesicles may be an additional target of nicotine inhaled upon smoking and of α7-specific drugs widely discussed as anti-inflammatory and pro-cognitive tools.Olfactory dysfunction is related with various neurodegenerative and neuropsychiatric disorders such as Alzheimer’s disease and Parkinson’s disease, which show impaired cognitive functions. However, the effects of olfactory dysfunction on hippocampal dependent learning and memory remain elusive. In this study, mice were treated with intranasal zinc sulfate (ZnSO4) infusion which resulted in a complete but reversible loss of olfactory function. Olfaction was totally destroyed even 1 week after zinc sulfate treatment, but partially recovered 4 weeks later. We found learning and memory in Y-maze and fear conditioning were not affected by ZnSO4 1 week after the treatment, but learning and memory were severely destroyed 4 weeks later. Electrophysiology results showed impaired hippocampal long-term potentiation and long-term depression 4 weeks after the olfaction dysfunction, while only long-term depression was impaired 1 week after the treatment. Western blot showed that the expression and phosphorylation of GluA1 in zinc group did not show any increase after fear conditioning as the control mice.

New Report

Close