Activity

  • Reilly Corneliussen posted an update 10 hours, 5 minutes ago

    These optional template techniques used for integrating oxides on Si are of significance to fulfill practical applications of oxide films in different fields.Next-generation sequencing (NGS) has become a mainstream method in bioanalysis. Improvements in sequencing and bioinformatics turned the complex and cumbersome library preparation to the bottleneck in terms of reproducibility and costs in the complete NGS workflow. Here, we introduce an automated library preparation approach based on a generic centrifugal microfluidic cartridge. Multiplex polymerase chain reaction amplification and subsequent cleanup were performed with all reagents prestored on the disk, including cell-line-based DNA as quality control. Exchange of prestored reagents allows applying the cartridge to different target genes. Sequencing of automatically prepared libraries from T-cell receptor and immunoglobulin gene rearrangements in context of lymphoproliferative disorders demonstrated excellent cleanup performance between 91.9 and 99.9% of target DNA reads and successful amplification of all target regions by up to 15 forward primers combined with 4 reverse primers. The fully automated library preparation by centrifugal microfluidics thus offers attractive automation options in diagnostic settings.Random screening suggested that the EtOH extract of Artemisia myriantha (Asteraceae) and its EtOAc fraction had cytotoxicity against HepG2 cells with inhibitory ratios of 30.6% and 53.5% at 50.0 μg/mL. Bioassay-guided isolation of the most active fractions (Fr. C and Fr. D) afforded 19 new sesquiterpenolides, artemyrianolides A-S (1-19), involving 13 germacranolides (1-13), four guaianolides (14-17), and two eudesmanolides (18 and 19), together with 16 known sesquiterpenoids (20-35). The new compounds were characterized by physical data analyses (HRESIMS, IR, 1D and 2D NMR, ECD), and the absolute configurations of compounds 1, 2, and 11 were determined by X-ray crystallography. Structurally, compounds 2 and 11-13 maintain an uncommon cis-fused 10/5 bicyclic system and compound 12 possesses an unusual (7S) configuration. Twenty of the compounds exhibited cytotoxicity against HepG2, Huh7, and SMMC-7721 cell lines. Compound 9 showed cytotoxic activity on both HepG2 and Huh7 cells with IC50 values of 8.6 and 8.8 μM, and compounds 8 and 33 showed cytotoxicity to the three human hepatoma cell lines with IC50 values of 4.9 and 7.4 μM (HepG2), 4.3 and 7.8 μM (Huh7), and 3.1 and 9.8 μM (SMMC-7721), respectively.Key steps in the functionalization of an unactivated arene often involve its dihaptocoordination by a transition metal followed by insertion into the C-H bond. However, rarely are the η2-arene and aryl hydride species in measurable equilibrium. In this study, the benzene/phenyl hydride equilibrium is explored for the WTp(NO)(PBu3) (Bu = n-butyl; Tp = trispyrazoylborate) system as a function of temperature, solvent, ancillary ligand, and arene substituent. Both face-flip and ring-walk isomerizations are identified through spin-saturation exchange measurements, which both appear to operate through scission of a C-H bond. The effect of either an electron-donating or electron-withdrawing substituent is to increase the stability of both arene and aryl hydride isomers. Crystal structures, electrochemical measurements, and extensive NMR data further support these findings. Static density functional theory calculations of the benzene-to-phenyl hydride landscape suggest a single linear sequence for this transformation involving a sigma complex and oxidative cleavage transition state. Static DFT calculations also identified an η2-coordinated benzene complex in which the arene is held more loosely than in the ground state, primarily through dispersion forces. Although a single reaction pathway was identified by static calculations, quasiclassical direct dynamics simulations identified a network of several reaction pathways connecting the η2-benzene and phenyl hydride isomers, due to the relatively flat energy landscape.There are a variety of complementary observations that could be used in the search for life in extraterrestrial settings. At the molecular scale, patterns in the distribution of organics could provide powerful evidence of a biotic component. In order to observe these molecular biosignatures during spaceflight missions, it is necessary to perform separation science in situ. Microchip electrophoresis (ME) is ideally suited for this task. Although this technique is readily miniaturized and numerous instruments have been developed over the last 3 decades, to date, all lack the automation capabilities needed for future missions of exploration. We have developed a portable, automated, battery-powered, and remotely operated ME instrument coupled to laser-induced fluorescence detection. This system contains all the necessary hardware and software interfaces for end-to-end functionality. Here, we report the first application of the system for amino acid analysis coupled to an extraction unit in order to demonstrate automated sample-to-data operation. The system was remotely operated aboard a rover during a simulated Mars mission in the Atacama Desert, Chile. IDF11774 This is the first demonstration of a fully automated ME analysis of soil samples relevant to planetary exploration. This validation is a critical milestone in the advancement of this technology for future implementation on a spaceflight mission.Inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used in Life Sciences for the absolute quantification of biomolecules without specific standards, assuming the same response for generic compounds including complex biomolecules. However, contradictory results have been published on this regard. We present the first critical statistical comparison of the ICP-MS response factors obtained for 14 different relevant S-containing biomolecules (three peptides, four proteins, one amino acid, two cofactors, three polyethylene glycol (PEG) derivatives, and sulfate standard), covering a wide range of hydrophobicities and molecular sizes. Two regular flow nebulizers and a total consumption nebulizer (TCN) were tested. ICP-MS response factors were determined though calibration curves, and isotope dilution analysis was used to normalize the results. No statistical differences have been found for low-molecular-weight biocompounds, PEGs, and nonhydrophobic peptides using any of the nebulizers tested. Interestingly, while statistical differences were still found negligible (96-104%) for the proteins and hydrophobic peptide using the TCN, significantly lower response factors (87-40%) were obtained using regular flow nebulizers.

New Report

Close