Activity

  • Carroll Kanstrup posted an update 1 week, 5 days ago

    Vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the vaginal microbiota is dominated by members of the Lactobacillus genus, whose relative abundance and microbial taxa composition are dependent on the healthy status of this human body site. Particularly, among members of this genus, the high prevalence of Lactobacillus crispatus is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 healthy vaginal microbiome samples through shotgun metagenomics analyses. Based on our results we observed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Therefore, we isolated fifteen L. crispatus strains from different environments in which this species is abounding, ranging from vaginal swabs of healthy women to chicken fecal samples. The genomes of these strains were decoded and their genetic conton of 94 public healthy vaginal samples through shotgun metagenomics analyses. Results showed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. RP-102124 Moreover, we isolated and sequenced the genome of new L. crispatus strains from different environments and the comparative genomics analysis revealed a genetic adaptation of strains to their ecological niche. In addition, in-vitro growth experiments display the capability of this species to modulate the composition of the vaginal microbial consortia. Overall, our findings suggest an ecological role exploited by L. crispatus in reducing the complexity of the vaginal microbiota toward a depletion of pathogenic bacteria.Halolysins, which are subtilisin-like serine proteases of haloarchaea, are usually secreted into the extracellular matrix via the twin-arginine translocation pathway. A small number of activated molecules can greatly affect cell growth owing to their proteolytic activity. It is, however, unclear as to whether this proteolysis-based growth inhibition by halolysins conveys antagonistic or defensive effects against other resident abd potentially competitive microorganisms. Here, we report that halolysin R4 (HlyR4), encoded by the hlyR4 gene, is the key enzyme in the initial steps of extracellular protein utilization in Haloferax mediterranei HlyR4 shows significant antagonistic activity against other haloarchaeal strains. Deletion of hlyR4 completely halts the inhibition activity of Hfx. mediterranei towards other haloarchaea, while correspondingly, complementation of hlyR4 almost completely restores the inhibition activity. Furthermore, Hfx. mediterranei strains containing hlyR4 showed a certain amount of resisacellular proteases from haloarchaea. Studies on multifunctional halolysins reveal that they play an important ecological role in shaping microbial community composition and provide a new perspective towards understanding the intricate interactions between haloarchaeal cells in hypersaline environments. HlyR4 can lyse competing cells living in the same environment, and the cell debris may probably be utilized as nutrients, which may constitute an important part of nutrient cycling in extremely hypersaline environments.The gut microbiota has a significant impact on host health. Dietary interventions using probiotics, prebiotics and postbiotics have the potential to alter microbiota composition and function. Other therapeutic interventions such as antibiotics and faecal microbiota transplantation have also been shown to significantly alter the microbiota and its metabolites. Supplementation of a faecal fermentation model of the human gut with a postbiotic product Lactobacillus LB led to changes in microbiome composition (i.e. increase in beneficial bifidobacteria) and associated metabolic changes (i.e. increased acid production). Lactobacillus LB is a heat-treated preparation of cellular biomass and a fermentate generated by Limosilactobacillus fermentum CNCM MA65/4E-1b (formerly known as Lactobacillus fermentum CNCM MA65/4E-1b) and Lactobacillus delbrueckii ssp. delbrueckii CNCM MA65/4E-2z, medically relevant strains used to produce antidiarrheal preparations. In pure culture, Lactobacillus LB also stimulates the growth of ed lactic acid bacteria and their metabolites) can stimulate the growth of bifidobacteria in human fermented faecal communities and in pure culture. Given the heat-treatment applied during the production process, there is no risk of the lactic acid bacteria colonising (or causing bacteraemia) in vulnerable consumers (infants, immunocompromised, etc). Lactobacillus LB has the potential to affect human health by selectively promoting the growth of beneficial bacteria.White-rot fungi, especially Trametes strains, are the primary source of industrial laccases in bioenergy and bioremediation. Trametes strains express members of the laccase gene family with different physicochemical properties and expression patterns. However, the literature on the expression pattern of the laccase gene family in T. trogii S0301 and the response mechanism to Cu2+, a key laccase inducer, in white-rot fungal strains is scarce. In the present study, we found that Cu2+ could induce the mRNAs and proteins of the two alternative splicing variants of heat shock transcription factor 2 (TtHSF2). Furthermore, the overexpression of alternative splicing variants TtHSF2α and TtHSF2β-I in the homokaryotic T. trogii S0301 strain showed opposite effects on the extracellular total laccase activity, with the maximum laccase activity of approximately 0.6 U mL-1 and 3.0 U mL-1, respectively, on the eighth day, which is 0.4 and 2.3 times that of the wild type strain. Similarly, TtHSF2α and TtHSF2β-I play oppositeion of laccase genes, and copper can induce the expression of almost all members of the laccase gene family. Most importantly, our study suggested that TtHSF2 and its alternative splicing variants are vital for copper-induced production of laccases in T. trogii S0301.Although emerging evidence indicates that bacteria extracellularly export many cytoplasmic proteins referred to as non-classically secreted proteins (ncSecPs) for their own benefit, the mechanisms and functional significance of the ncSecPs in extracellular milieu remain elusive. “Candidatus Liberibacter asiaticus” (CLas) is a fastidious Gram-negative bacterium that causes Huanglongbing (HLB), the most globally devastating citrus disease. In this study, using the SecretomeP program coupled with an Escherichia coli alkaline phosphatase assay, we identified 27 ncSecPs from the CLas genome. Further, we demonstrated that 10 of these exhibited significantly higher levels of gene expression in citrus than in psyllid hosts, and particularly suppressed hypersensitive response (HR)-based cell death and H2O2 overaccumulation in Nicotiana benthamiana, indicating their opposing effects on early plant defenses. However, these proteins also dramatically enhanced the gene expression of pathogenesis-related 1 protein (PR-1), PR-2, and PR-5, essential components of plant defense mechanisms.

New Report

Close